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xvi

P R E F A C E

The goal of this f fth edition of Simulation Modeling and Analysis remains the 
same as that for the f rst four editions: to give a comprehensive and state-of-the-art 
treatment of all the important aspects of a simulation study, including modeling, 
simulation software, model verif cation and validation, input modeling, random-
number generators, generating random variates and processes, statistical design and 
analysis of simulation experiments, and to highlight major application areas such as 
manufacturing. The book strives to motivate intuition about simulation and model-
ing, as well as to present them in a technically correct yet clear manner. There are 
many examples and problems throughout, as well as extensive references to the 
simulation and related literature for further study.

The book can serve as the primary text for a variety of courses, for example

• A f rst course in simulation at the junior, senior, or beginning-graduate-student 
level in engineering, manufacturing, business, or computer science (Chaps. 1 
through 4 and parts of Chaps. 5 through 9 and 13). At the end of such a course, 
the student will be prepared to carry out complete and effective simulation stud-
ies, and to take advanced simulation courses.

• A second course in simulation for graduate students in any of the above disciplines 
(most of Chaps. 5 through 12). After completing this course, the student should be 
familiar with the more advanced methodological issues involved in a simulation 
study, and should be prepared to understand and conduct simulation research.

• An introduction to simulation as part of a general course in operations research or 
management science (parts of Chaps. 1, 3, 5, 6, 9, and 13).

For instructors who have adopted the book for use in a course, I have made 
available for download from the website www.mhhe.com/law a number of teaching 
support materials. These include a comprehensive set of solutions to the Problems 
and all the computer code for the simulation models and random-number generators 
in Chaps. 1, 2, and 7. Adopting instructors should contact their local McGraw-Hill 
representative for login identif cation and a password to gain access to the material 
on this site; local representatives can be identif ed by calling 1-800-338-3987 or by 
using the representative locator at www.mhhe.com.

The book can also serve as a def nitive reference for simulation practitioners 
and researchers. To this end I have included a detailed discussion of many practical 
examples gleaned in part from my own experiences and consulting projects. I have 
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also made major efforts to link subjects to the relevant research literature, both in 
print and on the web, and to keep this material up to date. Prerequisites for under-
standing the book are knowledge of basic calculus-based probability and statistics 
(although I give a review of these topics in Chap. 4) and some experience with 
computing. For Chaps. 1 and 2 the reader should also be familiar with a general-
purpose programming language such as C. Occasionally I will also make use of a 
small amount of linear algebra or matrix theory. More advanced or technically dif-
f cult material is located in starred sections or in appendixes to chapters. At the 
beginning of each chapter, I suggest sections for a f rst reading of that chapter.

I have made numerous changes and additions to the fourth edition of the book 
to arrive at this f fth edition, but the organization has remained mostly the same. 
I have moved the material on other types of simulation from Chap. 1 to a new 
Chap. 13, which is discussed below. Chapter 2 on modeling complex systems has been 
updated to ref ect the latest research on eff cient event-list management. Chapter 3 
has been rewritten and expanded to ref ect the current state of the art in simulation 
software. A common example is now given in three of the leading general-purpose 
simulation packages. The discussion of conf dence intervals and hypothesis tests in 
Chap. 4 has been greatly enhanced, making the chapter a much more self-contained 
treatment of the basic probability and statistics needed for the remainder of the 
book. Chapter 5 makes clearer the distinction between validating and calibrating a 
model, which is often misunderstood. For Chap. 6 on input modeling, the latest 
developments in accounting for input-model uncertainty and in modeling arrival 
processes are discussed. Chapter 7 provides recommendations on the best-available 
random-number generators. Chapter 8 on generating random variates and processes 
has only had minor updates. Many of the statistical design-and-analysis methods of 
Chaps. 9 through 12 have been expanded and updated extensively to ref ect current 
practice and recent research. In particular, Chap. 9 contains a comprehensive dis-
cussion of the latest f xed-sample-size and sequential methods for estimating the 
steady-state mean of a simulated system. The discussion of ranking-and-selection 
procedures in Chap. 10 has been expanded to include newer and more eff cient 
methods that are not based on the classical indifference-zone approach. Chapter 11 
on variance-reduction techniques has only had minor changes. In Chap. 12, I give a 
much more comprehensive and self-contained discussion of design of experiments 
and metamodeling, with a particular emphasis on what designs and metamodels to 
use specif cally for simulation modeling. The discussion of simulating manufactur-
ing systems is now in a new Chap. 14, which is available on the book’s website 
www.mhhe.com/law, rather than in the book itself. It has been brought up to date in 
terms of the latest simulation-software packages and uses of simulation for manu-
facturing applications. There is a new Chap. 13 that discusses agent-based simulation 
and system dynamics, as well as other types of simulation that were previously 
discussed in Chap. 1 of the fourth edition. A student version of the ExpertFit 
distribution-f tting software is now available on the book’s website; it can be used 
to analyze the data sets corresponding to the examples and problems in Chap. 6. The 
references for all the chapters are collected together at the end of the book, to make 
this material more compact and convenient to the reader. A large and thorough sub-
ject index enhances the book’s value as a reference.
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This text is available as an eBook at www.
CourseSmart.com. At CourseSmart you can take 
advantage of signif cant savings off the cost of a 

print textbook, reduce their impact on the environment, and gain access to powerful 
web tools for learning. CourseSmart eBooks can be viewed online or downloaded 
to a computer. The eBooks allow readers to do full text searches, add highlighting 
and notes, and share notes with others. CourseSmart has the largest selection of 
eBooks available anywhere. Visit www.CourseSmart.com to learn more and to try a 
sample chapter.

I would f rst like to thank my former coauthor David Kelton for his numerous 
contributions to the f rst three editions of the book. The formal reviewers for the 
f fth edition were Christos Alexopoulos (Georgia Institute of Technology), Russell 
Barton (Pennsylvania State University), Chun-Hung Chen (George Mason Univer-
sity), Shane Henderson (Cornell University), Jack Kleijnen (Tilberg University), 
Pierre L’Ecuyer (Université de Montréal), Charles Macal (Argonne National Lab), 
Michael North (Argonne National Lab), and Douglas Samuelson (InfoLogix). They 
each read one new or signif cantly changed chapter in great detail and made many 
valuable suggestions. Knowing that I will certainly inadvertently commit grievous 
errors of omission, I would nonetheless like to thank the following individuals for 
their help in various ways: Wayne Adams, Mark Anderson, Sigrun Andradóttir, Jay 
April, Robert Axtell, Emmett Beeker, Marco Better, Edmund Bitinas, A. J. Bobo, 
Andrei Borshchev, Nathanael Brown, John Carson, Loren Cobb, Eric Frisco, David 
Galligan, Nigel Gilbert, Fred Glover, David Goldsman, Daniel Green, Charles Harrell, 
Thomas Hayson, James Henriksen, Raymond Hill, Kathryn Hoad, Terril Hurst, 
Andrew Ilachinski, Jeffrey Joines, Harry King, David Krahl, Emily Lada,  Michael 
Lauren, Steff  Law, Thomas Lucas, Gregory McIntosh, Janet McLeavey, Anup 
Mokashi, Daniel Muller, Rodney Myers, William Nordgren, Ernie Page,  Dennis 
Pegden, David Peterson, Stuart Robinson, Paul Sanchez, Susan Sanchez, Lee 
Schruben, David Siebert, Jeffrey Smith, David Sturrock, Ali Tafazzoli, Andrew Waller, 
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Tucson, AZ
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1

C H A P T E R  1

Basic Simulation Modeling

Recommended sections for a f rst reading: 1.1 through 1.4 (except 1.4.7), 1.7, 1.8

1.1
THE NATURE OF SIMULATION

This is a book about techniques for using computers to imitate, or simulate, the 
operations of various kinds of real-world facilities or processes. The facility or pro-
cess of interest is usually called a system, and in order to study it scientif cally we 
often have to make a set of assumptions about how it works. These assumptions, 
which usually take the form of mathematical or logical relationships, constitute a 
model that is used to try to gain some understanding of how the corresponding 
system behaves.

If the relationships that compose the model are simple enough, it may be pos-
sible to use mathematical methods (such as algebra, calculus, or probability theory) 
to obtain exact information on questions of interest; this is called an analytic solu-
tion. However, most real-world systems are too complex to allow realistic models to 
be evaluated analytically, and these models must be studied by means of simulation. 
In a simulation we use a computer to evaluate a model numerically, and data are 
gathered in order to estimate the desired true characteristics of the model.

As an example of the use of simulation, consider a manufacturing company that 
is contemplating building a large extension on to one of its plants but is not sure if 
the potential gain in productivity would justify the construction cost. It certainly 
would not be cost-effective to build the extension and then remove it later if it does 
not work out. However, a careful simulation study could shed some light on the 
question by simulating the operation of the plant as it currently exists and as it 
would be if the plant were expanded.
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2 basic simulation modeling

Application areas for simulation are numerous and diverse. Below is a list of 
some particular kinds of problems for which simulation has been found to be a use-
ful and powerful tool:

• Designing and analyzing manufacturing systems
• Evaluating military weapons systems or their logistics requirements
• Determining hardware requirements or protocols for communications networks
• Determining hardware and software requirements for a computer system
• Designing and operating transportation systems such as airports, freeways, ports, 

and subways
• Evaluating designs for service organizations such as call centers, fast-food restau-

rants, hospitals, and post off ces
• Reengineering of business processes
• Analyzing supply chains
• Determining ordering policies for an inventory system
• Analyzing mining operations

Simulation is one of the most widely used operations-research and management-
science techniques, if not the most widely used. One indication of this is the Winter 
Simulation Conference, which attracts 600 to 800 people every year. In addition, 
there are several other simulation conferences that often have more than 100 partici-
pants per year.

There are also several surveys related to the use of operations-research tech-
niques. For example, Lane, Mansour, and Harpell (1993) reported from a longitudi-
nal study, spanning 1973 through 1988, that simulation was consistently ranked as 
one of the three most important “operations-research techniques.” The other two 
were “math programming” (a catch-all term that includes many individual tech-
niques such as linear programming, nonlinear programming, etc.) and “statistics” 
(which is not an operations-research technique per se). Gupta (1997) analyzed 
1294 papers from the journal Interfaces (one of the leading journals dealing with 
applications of operations research) from 1970 through 1992, and found that simu-
lation was second only to “math programming” among 13 techniques considered.

There have been, however, several impediments to even wider acceptance 
and usefulness of simulation. First, models used to study large-scale systems tend 
to be very complex, and writing computer programs to execute them can be an 
arduous task indeed. This task has been made much easier in recent years by the 
development of excellent software products that automatically provide many of 
the features needed to “program” a simulation model. A second problem with 
simulation of complex systems is that a large amount of computer time is some-
times required. However, this diff culty has become much less severe as com-
puters become faster and cheaper. Finally, there appears to be an unfortunate 
impression that simulation is just an exercise in computer programming, albeit a 
complicated one. Consequently, many simulation “studies” have been composed 
of heuristic model building, programming, and a single run of the program to 
obtain “the answer.” We fear that this attitude, which neglects the important 
issue of how a properly coded model should be used to make inferences about the 
 system of interest, has doubtless led to erroneous conclusions being drawn from 
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chapter one 3

many simulation studies. These questions of simulation methodology, which are 
largely independent of the software and hardware used, form an integral part of 
the latter chapters of this book.

Perspectives on the historical evolution of simulation modeling may be found 
in Nance and Sargent (2002).

In the remainder of this chapter (as well as in Chap. 2) we discuss systems and 
models in considerably greater detail and then show how to write computer pro-
grams in a general-purpose language to simulate systems of varying degrees of 
complexity. All of the computer code shown in this chapter can be downloaded 
from www.mhhe.com/law.

1.2
SYSTEMS, MODELS, AND SIMULATION

A system is def ned to be a collection of entities, e.g., people or machines, that act 
and interact together toward the accomplishment of some logical end. [This def ni-
tion was proposed by Schmidt and Taylor (1970).] In practice, what is meant by “the 
system” depends on the objectives of a particular study. The collection of entities 
that comprise a system for one study might be only a subset of the overall system 
for another. For example, if one wants to study a bank to determine the number of 
tellers needed to provide adequate service for customers who want just to cash a 
check or make a savings deposit, the system can be def ned to be that portion of the 
bank consisting of the tellers and the customers waiting in line or being served. If, 
on the other hand, the loan off cer and the safe-deposit boxes are to be included, the 
def nition of the system must be expanded in an obvious way. [See also Fishman 
(1978, p. 3).] We def ne the state of a system to be that collection of variables neces-
sary to describe a system at a particular time, relative to the objectives of a study. 
In a study of a bank, examples of possible state variables are the number of busy 
tellers, the number of customers in the bank, and the time of arrival of each cus-
tomer in the bank.

We categorize systems to be of two types, discrete and continuous. A discrete 
system is one for which the state variables change instantaneously at separated 
points in time. A bank is an example of a discrete system, since state variables— 
e.g., the number of customers in the bank—change only when a customer arrives or 
when a customer f nishes being served and departs. A continuous system is one for 
which the state variables change continuously with respect to time. An airplane 
moving through the air is an example of a continuous system, since state variables 
such as position and velocity can change continuously with respect to time. Few 
systems in practice are wholly discrete or wholly continuous; but since one type of 
change predominates for most systems, it will usually be possible to classify a sys-
tem as being either discrete or continuous.

At some point in the lives of most systems, there is a need to study them to try 
to gain some insight into the relationships among various components, or to predict 
performance under some new conditions being considered. Figure 1.1 maps out dif-
ferent ways in which a system might be studied.
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4 basic simulation modeling

• Experiment with the Actual System vs. Experiment with a Model of the System. If 
it is possible (and cost-effective) to alter the system physically and then let it 
 operate under the new conditions, it is probably desirable to do so, for in this case 
there is no question about whether what we study is valid. However, it is rarely 
feasible to do this, because such an experiment would often be too costly or too 
disruptive to the system. For example, a bank may be contemplating reducing the 
number of tellers to decrease costs, but actually trying this could lead to long 
customer delays and alienation. More graphically, the “system” might not even 
exist, but we nevertheless want to study it in its various proposed alternative con-
f gurations to see how it should be built in the f rst place; examples of this situation 
might be a proposed communications network, or a strategic nuclear weapons 
system. For these reasons, it is usually necessary to build a model as a representa-
tion of the system and study it as a surrogate for the actual system. When using a 
model, there is always the question of whether it accurately ref ects the system for 
the purposes of the decisions to be made; this question of model validity is taken 
up in detail in Chap. 5.

• Physical Model vs. Mathematical Model. To most people, the word “model” 
evokes images of clay cars in wind tunnels, cockpits disconnected from their 
 airplanes to be used in pilot training, or miniature supertankers scurrying about 
in a swimming pool. These are examples of physical models (also called iconic 
models), and are not typical of the kinds of models that are usually of interest in 
operations research and systems analysis. Occasionally, however, it has been 
found useful to build physical models to study engineering or management 

System

Experiment 
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actual system

Experiment 
with a model
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Mathematical
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Analytical
solution

Simulation

FIGURE 1.1
Ways to study a system.
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chapter one 5

systems; examples include tabletop scale models of material-handling systems, 
and in at least one case a full-scale physical model of a fast-food restaurant 
 inside a warehouse, complete with full-scale, real (and presumably hungry) 
 humans [see Swart and Donno (1981)]. But the vast majority of models built for 
such purposes are mathematical, representing a system in terms of logical and 
quantitative relationships that are then manipulated and changed to see how the 
model reacts, and thus how the system would react—if the mathematical model 
is a valid one. Perhaps the simplest example of a mathematical model is the 
 familiar relation d 5 rt, where r is the rate of travel, t is the time spent traveling, 
and d is the distance traveled. This might provide a valid model in one instance 
(e.g., a space probe to another planet after it has attained its f ight velocity) but a 
very poor model for other purposes (e.g., rush-hour commuting on congested 
urban freeways).

• Analytical Solution vs. Simulation. Once we have built a mathematical model, it 
must then be examined to see how it can be used to answer the questions of inter-
est about the system it is supposed to represent. If the model is simple enough, 
it may be possible to work with its relationships and quantities to get an exact, 
analytical solution. In the d 5 rt example, if we know the distance to be traveled 
and the velocity, then we can work with the model to get t 5 dyr as the time that 
will be required. This is a very simple, closed-form solution obtainable with just 
paper and pencil, but some analytical solutions can become extraordinarily com-
plex, requiring vast computing resources; inverting a large nonsparse matrix is a 
well-known example of a situation in which there is an analytical formula known 
in principle, but obtaining it numerically in a given instance is far from trivial. If 
an analytical solution to a mathematical model is available and is computationally 
eff cient, it is usually desirable to study the model in this way rather than via a 
simulation. However, many systems are highly complex, so that valid mathe-
matical models of them are themselves complex, precluding any possibility of an 
analytical solution. In this case, the model must be studied by means of simulation, 
i.e., numerically exercising the model for the inputs in question to see how they 
affect the output measures of performance.

While there may be a small element of truth to pejorative old saws such as “method 
of last resort” sometimes used to describe simulation, the fact is that we are very 
quickly led to simulation in most situations, due to the sheer complexity of the sys-
tems of interest and of the models necessary to represent them in a valid way.

Given, then, that we have a mathematical model to be studied by means of 
simulation (henceforth referred to as a simulation model), we must then look for 
particular tools to do this. It is useful for this purpose to classify simulation models 
along three different dimensions:

• Static vs. Dynamic Simulation Models. A static simulation model is a representa-
tion of a system at a particular time, or one that may be used to represent a system 
in which time simply plays no role; examples of static simulations are certain 
Monte Carlo models, discussed in Sec. 13.5. On the other hand, a dynamic simu-
lation model represents a system as it evolves over time, such as a conveyor 
system in a factory.
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6 basic simulation modeling

• Deterministic vs. Stochastic Simulation Models. If a simulation model does not 
contain any probabilistic (i.e., random) components, it is called deterministic; 
a complicated (and analytically intractable) system of differential equations de-
scribing a chemical reaction might be such a model. In deterministic models, the 
output is “determined” once the set of input quantities and relationships in the 
model have been specif ed, even though it might take a lot of computer time to 
evaluate what it is. Many systems, however, must be modeled as having at least 
some random input components, and these give rise to stochastic simulation mod-
els. (For an example of the danger of ignoring randomness in modeling a system, 
see Sec. 4.7.) Most queueing and inventory systems are modeled stochastically. 
Stochastic simulation models produce output that is itself random, and must 
therefore be treated as only an estimate of the true characteristics of the model; 
this is one of the main disadvantages of simulation (see Sec. 1.8) and is dealt with 
in Chaps. 9 through 12 of this book.

• Continuous vs. Discrete Simulation Models. Loosely speaking, we def ne discrete 
and continuous simulation models analogously to the way discrete and continu-
ous systems were def ned above. More precise def nitions of discrete (event) sim-
ulation and continuous simulation are given in Secs. 1.3 and 13.3, respectively. It 
should be mentioned that a discrete model is not always used to model a discrete 
system, and vice versa. The decision whether to use a discrete or a continuous 
model for a particular system depends on the specif c objectives of the study. For 
example, a model of traff c f ow on a freeway would be discrete if the character-
istics and movement of individual cars are important. Alternatively, if the cars can 
be treated “in the aggregate,” the f ow of traff c can be described by differential 
equations in a continuous model. More discussion on this issue can be found in 
Sec. 5.2, and in particular in Example 5.2.

The simulation models we consider in the remainder of this book, except for 
those in Chap. 13, will be discrete, dynamic, and stochastic and will henceforth be 
called discrete-event simulation models. (Since deterministic models are a special 
case of stochastic models, the restriction to stochastic models involves no loss of 
generality.)

1.3
DISCRETE-EVENT SIMULATION

Discrete-event simulation concerns the modeling of a system as it evolves over time 
by a representation in which the state variables change instantaneously at separate 
points in time. (In more mathematical terms, we might say that the system can 
change at only a countable number of points in time.) These points in time are the 
ones at which an event occurs, where an event is def ned as an instantaneous occur-
rence that may change the state of the system. Although discrete-event simulation 
could conceptually be done by hand calculations, the amount of data that must be 
stored and manipulated for most real-world systems dictates that discrete-event 
simulations be done on a digital computer. (In Sec. 1.4.2 we carry out a small hand 
simulation, merely to illustrate the logic involved.)
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E X A M P L E  1 . 1 .  Consider a service facility with a single server—e.g., a one-operator 
barbershop or an information desk at an airport—for which we would like to estimate the 
(expected) average delay in queue (line) of arriving customers, where the delay in queue 
of a customer is the length of the time interval from the instant of his arrival at the facility 
to the instant he begins being served. For the objective of estimating the average delay of 
a customer, the state variables for a discrete-event simulation model of the  facility would 
be the status of the server, i.e., either idle or busy, the number of customers waiting in 
queue to be served (if any), and the time of arrival of each person waiting in queue. The 
status of the server is needed to determine, upon a customer’s arrival, whether the cus-
tomer can be served immediately or must join the end of the queue. When the server 
completes serving a customer, the number of customers in the queue is used to determine 
whether the server will become idle or begin serving the f rst customer in the queue. 
The time of arrival of a customer is needed to compute his delay in queue, which is 
the time he begins being served (which will be known) minus his time of arrival. There 
are two types of events for this system: the arrival of a customer and the completion of 
service for a customer, which results in the customer’s departure. An arrival is an event 
since it causes the (state variable) server status to change from idle to busy or the (state 
variable) number of customers in the queue to increase by 1. Correspondingly, a depar-
ture is an event because it causes the server status to change from busy to idle or the 
number of customers in the queue to decrease by 1. We show in detail how to build a 
discrete-event simulation model of this single-server queueing system in Sec. 1.4.

In the above example both types of events actually changed the state of the 
system, but in some discrete-event simulation models events are used for purposes 
that do not actually effect such a change. For example, an event might be used to 
schedule the end of a simulation run at a particular time (see Sec. 1.4.6) or to 
schedule a decision about a system’s operation at a particular time (see Sec. 1.5) 
and might not actually result in a change in the state of the system. This is why we 
originally said that an event may change the state of a system.

1.3.1 Time-Advance Mechanisms

Because of the dynamic nature of discrete-event simulation models, we must keep 
track of the current value of simulated time as the simulation proceeds, and we also 
need a mechanism to advance simulated time from one value to another. We call the 
variable in a simulation model that gives the current value of simulated time the 
simulation clock. The unit of time for the simulation clock is never stated explicitly 
when a model is written in a general-purpose language such as C, and it is assumed 
to be in the same units as the input parameters. Also, there is generally no relation-
ship between simulated time and the time needed to run a simulation on the 
computer.

Historically, two principal approaches have been suggested for advancing the 
simulation clock: next-event time advance and f xed-increment time advance. Since 
the f rst approach is used by all major simulation software and by most people pro-
gramming their model in a general-purpose language, and since the second is a 
special case of the f rst, we shall use the next-event time-advance approach for all 
discrete-event simulation models discussed in this book. A brief discussion of f xed-
increment time advance is given in App. 1A (at the end of this chapter).
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8 basic simulation modeling

With the next-event time-advance approach, the simulation clock is initialized 
to zero and the times of occurrence of future events are determined. The simulation 
clock is then advanced to the time of occurrence of the most imminent (f rst) of these 
future events, at which point the state of the system is updated to account for the fact 
that an event has occurred, and our knowledge of the times of occurrence of future 
events is also updated. Then the simulation clock is advanced to the time of the 
(new) most imminent event, the state of the system is updated, and future event 
times are determined, etc. This process of advancing the simulation clock from one 
event time to another is continued until eventually some prespecif ed stopping con-
dition is satisf ed. Since all state changes occur only at event times for a discrete-
event simulation model, periods of inactivity are skipped over by jumping the clock 
from event time to event time. (Fixed-increment time advance does not skip over 
these inactive periods, which can eat up a lot of computer time; see App. 1A.) It 
should be noted that the successive jumps of the simulation clock are generally vari-
able (or unequal) in size.

E X A M P L E  1 . 2 .  We now illustrate in detail the next-event time-advance approach for 
the single-server queueing system of Example 1.1. We need the following notation:

 ti 5 time of arrival of the ith customer (t0 5 0)
 Ai 5 ti 2 ti21 5 interarrival time between (i 2 1)st and ith arrivals of customers
 Si 5  time that server actually spends serving ith customer (exclusive of customer’s

 delay in queue)
 Di 5 delay in queue of ith customer
 ci 5 ti 1 Di 1 Si 5 time that ith customer completes service and departs
 ei 5  time of occurrence of ith event of any type (ith value the simulation clock

 takes on, excluding the value e0 5 0)

Each of these def ned quantities will generally be a random variable. Assume that the 
probability distributions of the interarrival times A1, A2, . . . and the service times
S1, S2, . . . are known and have cumulative distribution functions (see Sec. 4.2) denoted 
by FA and FS, respectively. (In general, FA and FS would be determined by collecting 
data from the system of interest and then specifying distributions consistent with these 
data using the techniques of Chap. 6.) At time e0 5 0 the status of the server is idle, and 
the time t1 of the f rst arrival is determined by generating A1 from FA (techniques for 
generating random observations from a specif ed distribution are discussed in Chap. 8) 
and adding it to 0. The simulation clock is then advanced from e0 to the time of the next 
(f rst) event, e1 5 t1. (See Fig. 1.2, where the curved arrows represent advancing the 
simulation clock.) Since the customer arriving at time t1 f nds the server idle, she im-
mediately enters service and has a delay in queue of D1 5 0 and the status of the server 
is changed from idle to busy. The time, c1, when the arriving customer will complete 
service is computed by generating S1 from FS and adding it to t1. Finally, the time of the 
second arrival, t2, is computed as t2 5 t1 1 A2, where A2 is generated from FA. If t2 , c1, 
as depicted in Fig. 1.2, the simulation clock is advanced from e1 to the time of the next 
event, e2 5 t2. (If c1 were less than t2, the clock would be advanced from e1 to c1.) Since 
the customer arriving at time t2 f nds the server already busy, the number of customers 
in the queue is increased from 0 to 1 and the time of arrival of this customer is recorded; 
however, his service time S2 is not generated at this time. Also, the time of the third 
 arrival, t3, is computed as t3 5 t2 1 A3. If c1 , t3, as depicted in the f gure, the simulation 
clock is advanced from e2 to the time of the next event, e3 5 c1, where the customer 
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completing service departs, the customer in the queue (i.e., the one who arrived at time t2) 
begins service and his delay in queue and service-completion time are computed as 
D2 5 c1 2 t2 and c2 5 c1 1 S2 (S2 is now generated from FS), and the number of custom-
ers in the queue is decreased from 1 to 0. If t3 , c2, the simulation clock is advanced 
from e3 to the time of the next event, e4 5 t3, etc. The simulation might eventually be 
terminated when, say, the number of customers whose delays have been observed 
reaches some specif ed value.

1.3.2 Components and Organization of a Discrete-Event
Simulation Model

Although simulation has been applied to a great diversity of real-world systems, 
discrete-event simulation models all share a number of common components and 
there is a logical organization for these components that promotes the program-
ming, debugging, and future changing of a simulation model’s computer program. 
In particular, the following components will be found in most discrete-event simula-
tion models using the next-event time-advance approach programmed in a general-
purpose language:

System state: The collection of state variables necessary to describe the system 
at a particular time

Simulation clock: A variable giving the current value of simulated time
Event list: A list containing the next time when each type of event will occur
Statistical counters: Variables used for storing statistical information about 

system performance
Initialization routine: A subprogram to initialize the simulation model at time 0
Timing routine: A subprogram that determines the next event from the event 

list and then advances the simulation clock to the time when that event is 
to occur

Event routine: A subprogram that updates the system state when a particular 
type of event occurs (there is one event routine for each event type)

Library routines: A set of subprograms used to generate random observations 
from probability distributions that were determined as part of the simulation 
model

S1

A1

0 t1

e0 e1 e2 e3 e4 e5

t2 c1 c2t3

A2 A3

S2

Time

FIGURE 1.2
The next-event time-advance approach illustrated for the single-server queueing system.
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